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Self-organized criticality in deterministic systems with disorder

Paolo De Los Rios,* Angelo Valleriani,† and Jose´ Luis Vega‡

Max-Planck-Institut fu¨r Physik Komplexer Systeme, No¨thnitzer Strasse 38, D-01187 Dresden, Germany
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Using the Bak-Sneppen model of biological evolution as our paradigm, we investigate in which cases noise
can be substituted with a deterministic signal without destroying self-organized criticality~SOC!. If the deter-
ministic signal is chaotic the universality class is preserved; some nonuniversal features, such as the threshold,
depend on the time correlation of the signal. We also show that, if the signal introduced is periodic, SOC is
preserved but in a different universality class, as long as the spectrum of frequencies is broad enough.
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I. INTRODUCTION

Due to nature’s inherent complexity, a lot of effort h
gone into developing mathematical models to describe i
only qualitatively@1–16#. Among all natural processes, ev
lution has attracted a lot of attention because of its glo
consequences for life@17,18#. Within the realm of evolution,
one of the most fervidly argued topics is that of the expla
tion of mass extinctions@19#. Indeed, from a gradualistic
point of view, mass extinctions are rare events, due mainl
external abiotic factors such as earthquakes, meteorites
@20#. From the point of view ofpunctuated equilibrium, on
the other hand, mass extinctions are bursts of activity
tween periods of stasis@21–25#. The fossil record shows tha
the distribution of mass extinctions follows a power la
@26#. Among the many models proposed to describe evo
tion, those exhibiting self-organized criticality~SOC! @27,28#
are of particular interest. In layman terms, a system is ca
self-organized critical when it evolves towards a steady s
in which certain physical quantities show fluctuations on a
space and time scale~they follow power law distribution!.

In particular, we will concentrate on a model for macr
evolution proposed by Bak and Sneppen~BS! @25#. In it,
extinctions are associated with avalanches of activity with
an inherent time or length scale. In the original version of
model, no influence of the environment was taken into
count if not implicitly in the fitnesses of the species. Lat
Newman and co-workers@20# introduced a modified version
of the BS model in which an environmental stress is int
duced. All these versions of the model show self-organi
criticality and the randomness in the microscopic rule see
to play a relevant role.

In this paper we show that, if one substitutes the rand
updating of the dynamic variable with a chaotic or a perio
map, SOC is not destroyed@29#. Some nonuniversal feature
will, however, depend on the time correlation of the sign
Moreover, if the signal introduced is periodic, SOC is p
served but in a different universality class, as long as
spectrum of frequencies is broad enough~a brief discussion
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of some of these results can be also found in@31#!. Similar
conclusions have been drawn in the context of stand
fluctuation-dissipation processes by Bianucciet al. @32–34#.
The paper is organized as follows. In Sec. II we review
main features of the model as they are presented in the
erature. After introducing the maps in Sec. III, we show
Sec. IV the results obtained for different deterministic upd
ing rules. Our conclusions together with a brief descripti
of some open problems can be found in Sec. V.

II. GENERAL DESCRIPTION OF THE MODEL

The Bak-Sneppen model describes an ecosystem as a
lection of N species on ad-dimensional lattice, each one o
which can haveT traits associated with it@35#. To each one
of these traits corresponds a fitness described by a numbf
between 0 and 1@36#. Here, for simplicity, we consider the
case with one trait,d51, and periodic boundary conditions
To fix notation, we consider a one-dimensional lattice
lengthN. The initial state of the system is defined by assig
ing to each sitej a random fitnessf 0

j chosen from a uniform
distribution. The dynamics proceeds in three basic steps

~1! Find the site with the absolute minimum fitness on t
lattice ~this site will be called the active site! and its two
nearest neighbors.

~2! Change, at the same time, the values of their fitnes
by assigning to them new random numbers from a unifo
distribution.

~3! Go to step 1.
After an initial transient that will be of no interest to us,

nontrivial critical state is reached. This critical state, char
terized by its statistical properties, can be understood as
fluctuating balancebetween two competing ‘‘forces.’’ In-
deed, while the random assignation of the values, toge
with the coupling, acts as an entropic disorder, the choice
the minimum acts as an ordering force. As a result of t
competition, at the stationary state the majority of thef j have
values above a certain thresholdf c . Only a few will be be-
low f c , namely, those belonging to the running avalanc
~see@25,39# for a detailed discussion!. Since the avalanche
are the basic and fundamental mechanism of the model
therefore worth describing them in more general terms.

Let us suppose that the system is already at stationa
and let us find the minimum fitness, sayf 0, f c . We update
6451 © 1998 The American Physical Society
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6452 57DE LOS RIOS, VALLERIANI, AND VEGA
it together with its two nearest neighbors~the actual value of
the minimum does not really matter!. This updating creates
disorder in a small region in space, where most proba
there are some lattice sites withf j, f c . Then, the new mini-
mum will most probably be among the last three si
changed. The active site most probably will be one of
two nearest neighbors, thus affecting another site to the
or to the right. In the following time steps new sites will b
touched by the avalanche of mutations. Here one sees cle
the two aforementioned forces at work: Disorder~every new
value is chosen at random! and order~we decide to mutate
always the smallest!. Since the equilibrium drives the thresh
old to the valuef c. f 0, this means that thef 0 avalanche~an
avalanche during which all the selected minima are be
f 0) will eventually come to an end, in a finite timesf 0

[s0.

During this process thef 0 avalanche will also cover a certai
number of lattice sites, i.e., it will also have a spatial s
ncov

f 0 [n0. This feature gives the possibility to analyze a
find the critical values even without considering the syst
or lattice as a whole but simply analyzing the statistics off 0
avalanches@40#. Moreover, the avalanche dynamics sho
that, as long asf 0 is close tof c the average size~both in time
and space! of the related avalanches has to grow consid
ably. Both averages will eventually become infinite asf 0
→ f c , but this does not mean that all the avalanches
infinite ~or of the maximal space or time lengths allowed
the simulations!. Thesef 0 avalanches can be described
means of a distribution function@25,39#

Pa~s, f 0!5s2tF„s~ f c2 f 0!1/s
…. ~1!

In Eq. ~1! s is the time size of the avalanche andF is some
yet unknown scaling function that behaves like

F„s~ f c2 f 0!1/s
…5H 1 as s→0

0 as s@p0[~ f c2 f 0!21/s.
~2!

The average duration of anf 0 avalanche is given by

s̄05~ f c2 f 0!2g, ~3!

where the exponentg is given in terms of the previously
defined exponentst ands by

g5
22t

s
. ~4!

Numerical calculations provide good estimates for the va
of the threshold as well as the two exponentst ands @25,39#
~see Table I!. It is also useful to define other exponents th
can be easily obtained from numerical simulations. First
consider thefirst return timedistributionPf(n), namely, the
distribution of the times between two consecutive updati
of the same site~when it is the minimum!. Another distribu-
tion function is the all return time distribution Pall(n),
namely, the probability that a given site, active at timet
50, is active again at timet. In both cases, one defines th
corresponding exponents by

Pf~n!;n2t f and Pall~n!;n2tall. ~5!
ly
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In Table I we have listed the values of these exponent
they are given in the literature. It is worth noticing that the
exponents are not independent quantities. Indeed, the sc
relations derived in@25,39# show that at most two of them
can be independent. However, using the master equatio

~12 f 0!
]Pa~s, f 0!

] f 0
52Pa~s, f 0!n0~s!

1 (
s151

s21

Pa~s1 , f 0!n0~s1!Pa~s2s1 , f 0!

~6!

derived in @41# and the fact that n0(s);stall and
s511ta2t @25,39#, one proves that the only independe
exponent of the model istall of Eq. ~5! @42#. From Eq.~6!
one can also derive an infinite hierarchy of equations for
moments of the distribution. The first equation in this hie
archy

] ln s̄0

] f 0
5

n̄0

12 f 0
, ~7!

relates the exponents~4! to the average number of covere
sites; heren̄0 is the nonuniversal average number of sit
covered by thef 0 avalanches. Putting Eq.~3! into Eq. ~7!
gives the so calledg-equation@25,39#,

g5
n̄0

12 f 0
~ f c2 f 0!. ~8!

For models belonging to the same universality class,
with the sameg this equation relates the nonuniversal qua
tities n̄0 and the thresholdf c . In particular, as we shall see i
Sec. IV A, to a biggerf c must correspond a smallern̄0 for
fixed f 0.

An interesting consequence of Eq.~8! is that it is possible
to changef c while remaining in the same universality clas
This can be obtained by modifying the entropic tenden
Indeed substituting the random updating with a correla
chaotic system one introduces a correlation that leads to
increase towards 1 of the threshold. On the other han
greater correlation in the updating map means that the
tem spends more time in the same site, thus covering fe
sites in the same number of time steps in comparison wi
less correlated map. From Eq.~8! it is clear that asn̄0 de-
creases,f c increases.

TABLE I. The first four exponent values are quoted from@40#
while the last two are from@25,39#.

Quantity Value Error

f c 0.66702 8
t 1.073 3
s 0.343 4
g 2.70 2
t f 1.58 2
tall 0.42 2
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III. MAPS

As we have seen before, the source of mutations in
Bak-Sneppen model is the presence of random noise in
system. Since a chaotic map may exhibit statistical proper
similar to those of random noise, a similar competition b
tween order and disorder could be established when one
stitutes random updating with chaotic updating. To und
stand the similarities as well as the differences between
two kinds of updating, in this section we discuss some g
eral properties of maps.

A deterministic map is a rule in which the new value
the variable is given by

f n11
j 5F~ f n

j ! ~9!

with F a deterministic function andj the lattice site. In what
follows, we will only consider maps of the unit interval on
itself ~usually calledunimodular maps!. Disregarding peri-
odic trajectories, one can define several statistical quant
that are generally used to describe the properties of a gen
sequence$ f n%.

The first quantity of interest to us is theinvariant mea-
sure, m( f ). Formally, the invariant measure for a unimodu
map is defined by

m f 0
~ f !5 lim

N→`

1

N (
i 50

N

d@ f 2Fi~ f 0!#. ~10!

If m f 0
( f ) does not depend on the initial valuef 0, the map is

called ergodic@and one refers to the measure asm( f )#. If a
system is ergodic, time averages are equivalent to ph
space averages, and then the time average of any fun
g( f ) can be computed as a phase space average via

^g&5 lim
N→`

(
i 50

N

g~ f i !5E
0

1

m~ f !g~ f !d f . ~11!

To describe the behavior of individual trajectories one ne
more detailed information provided by theLyapunov expo-
nent L. The Lyapunov exponent measures the average
of separation inf space of two given trajectories per unit
time. It can be computed as

L5 lim
N→`

1

N (
i 50

N21

lnUdF

d f
~ f i !U. ~12!

If a map has a Lyapunov exponentL.0, this means tha
two trajectories will diverge from each other exponential
In this case the map is calledchaotic. This property has a
very important consequence: A very small perturbation
the initial condition will produce a completely different ou
come. Moreover, successive outcomes of a chaotic map
behave like a stochastic variable~statistically speaking!.

Finally, we will make use of theautocorrelation function
C(m), defined as

C~m!5 (
n50

`

~ f n1m2 f̄ !~ f n2 f̄ !, ~13!

where
e
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f̄ 5 lim
N→`

1

N (
i 50

N

Fi~ f 0!. ~14!

The functionC(m) is a measure of how the deviations fro
the average at timei are related to the deviations from th
averagem steps apart@44#. In particular, chaotic maps ar
expected to show exponentially decaying autocorrelat
functions, i.e.,

C~m!'e2m/t, ~15!

wheret is thecorrelation time.
We will now proceed to summarize the properties of t

different maps we will be using in the Bak-Sneppen mod
Before continuing, it is worth mentioning that, in principle
the case of random noise can be considered as a parti
case of Eq.~9! in which F( f n)[c(n) with c(n) a random
variable with a uniform probability density@43#.

A. Bernoulli maps

Let us start by considering the Bernoulli map@44#,
namely,

f n11
j 5Gr~ f n

j !5@r f n
j #, ~16!

where@ f # stands for the value off modulus 1 andr PN,r
.1 is a constant. It has been shown~see@44# and references
therein! that this map has a uniform invariant measure

m~BM!~ f !51, ~17!

where the functionm r( f ) has been defined in Eq.~10!. More-
over this map is chaotic and is characterized by a Lyapu
exponent given by

L~BM!5 ln r . ~18!

For this map one can easily compute the time autocorrela
function, namely,

C~BM!~m!5
1

12r m
5

1

12
e2mlnr , ~19!

whereC(BM)(m) has been defined in Eq.~13! and the corre-
lation time is given by

t5
1

ln r
. ~20!

One sees that the correlation time decreases asr increases.
This means that given two maps with different values ofr ,
the one with the bigger value ofr will be closer to true
random noise and then will decorrelate faster. As we sh
see in the following section, this last property is of cruc
importance in order to understand the differences betw
BS models with different Bernoulli maps.

B. Logistic map

Let us now consider the logistic map~sometimes called
Feigenbaum map!, namely,
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f n11
j 5l f n

j ~12 f n
j !. ~21!

The reasons for studying this map are manifold. On the
hand, this map has already been considered in the conte
biological evolution models and population dynamics@45–
47,50# and can thus provide a possible deterministic interp
tation of the evolution inside every ecological niche. Mor
over, it has been shown that it describes the behavior
wide variety of systems in nature@48#. On the other hand, i
has a regime in which it is chaotic as well as one in which
is not, depending on whetherl is bigger or less than the
critical value l`;3.56994@44# ~for l.l` there are win-
dows in which the map is periodic; in this paper we will ta
l outside these windows!.

If we consider the particular casel54, the invariant den-
sity for this map is given by

m~LM !~ f !5
1

pAf ~12 f !
, ~22!

the Lyapunov exponent is

L~LM !5 ln 2 ~23!

and the correlation function is given by

C~LM !~m!5dm,0 . ~24!

The fact that this map is chaotic does not mean that
trajectory cannot be written explicitly. Indeed, it is easy
see that

f n5sin2~2nc!, ~25!

with the initial condition f 05sin2(c), is a trajectory of the
logistic map in the case ofl54.

C. Tent map

To better illustrate the effects of time correlations in t
updating, we will also need the so-called ‘‘tent’’ map~a
‘‘linear version’’ of the logistic map!, defined as

f n11
j 5H 2 f n

j , f n
j , 1

2

2~12 f n
j !, f n

j . 1
2 .

~26!

This map is chaotic with Lyapunov exponentLTM5 ln 2.
Contrary to the case of the logistic map, the invariant m
sure for the tent map is uniform, i.e.,

m~TM!~ f !51, ~27!

with an autocorrelation function given by

C~TM!~m!5dm,0 , ~28!

as in the case of purely random noise. For our applicati
~see next section!, we find it useful to define a modified
version of the tent map~26! ~‘‘shifted tent map’’! in which
we cut they axis at 12h and then shift the functionh up
modulus one, as shown in the following equation:
e
of

-
-
a

t

e

-

s

f n11
j 5

¦

2 f n
j 1h, 0, f n

j ,
12h

2

2 f n
j 1h21,

12h

2
, f n

j ,
1

2

h1122 f n
j ,

1

2
, f n

j ,
11h

2

h1222 f n
j ,

11h

2
, f n

j ,1.

~29!

As an example, in Fig. 1 we can see the plot of Eq.~29! for
the caseh5 1

3.

D. Periodic map

So far we have only considered chaotic systems. Ho
ever, there are maps that are not chaotic but are ergodic
us consider a simple example of such a case in which
‘‘signal’’ is provided by an integrable system, that is a s
quence given by

f n
j 5

sin~v jn1f j !11

2
, ~30!

where thev j ,f j ’s are the angular frequencies and initi
phases, respectively. This can be rewritten as a map of n

j

onto f n11
j as

f n11
j 5

sin@arcsin~2 f n
j 21!1v j #11

2
, ~31!

where the initial conditionf 0
j is given by

f 0
j 5

11sinf j

2
.

The invariant measure is not constant, it is symme
aroundf 51/2 and peaked close tof 50,1 namely,

FIG. 1. Shifted tent map corresponding toh51/3. In particular,
for h50 one obtains the usual tent map, Eq.~26!.
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mP~ f !5
1

2pAf 22 f
. ~32!

Since this ‘‘signal’’ is not chaotic, the Lyapunov exponent
zero and the correlations will not decay exponentially.
fact, the correlations are given by

C~P!~m!5
cos~vm!

8
. ~33!

At this point it is worth emphasizing that these correlatio
are correlations for a given sequence. If we consider
sequences with different values ofv,f the correlation will
be different.

IV. MODELS

Through the use of the different maps presented in
previous section, we shall show here that the random up
ing is no longer a necessary requirement to have SOC. M
over we will also show that as long as the map at hand
chaotic the system does not change the universality cl
i.e., all the exponents are the same as in the case of ran
updating.

While the presence of critical behavior was somehow
pected, it is still surprising that the universality class does
change. This means that the system is able to self-organi
a higher level: It takes into account the temporal correlat
~or the average time spent in every site! by increasing the
threshold, so as to have the same statistical properties. W
is even more remarkable then is the fact that close enoug
the threshold it is not possible to distinguish the rand
updating case from the chaotic one from the microscop
point of view, because the statistical properties and all
variables are exactly the same. As a consequence, al
equations and relations shown in Sec. II are still valid for
the cases with chaotic updating.

We will show this equivalence through an infinite s
quence of models with Bernoulli updating, logistic and te
map updating. In fact, the same kind of analysis perform
on the case with the~modified! tent map can show that th
time correlations are actually the ones responsible for
shifts in the thresholds.

However, the universality class is not always preserv
In fact, if one chooses a nonchaotic updating rule the crit
exponents may change. We will show that by consider
quasiperiodic updating rules~31!.

A. Bernoulli updating

Let us consider a chaotic updating rule, whose statist
properties resemble those of a stochastic function, nam
the Bernoulli map, Eq.~16!.

In Fig. 2 we show the power-law behavior of the first a
all return probability distributions in the caser 52. The criti-
cal exponents obtained coincide with those found in@25,39#
for the random updating. Moreover, for all values ofr the
system falls in the BS universality class, i.e., it always h
the same critical exponents. The stationary distribution of
fitnesses, on the other hand, follows a different pattern.
deed, Fig. 3 shows that the threshold forr 52 is bigger than
s
o

e
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e-
is
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om
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t
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n
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the one found for the random case. On increasing the va
of r , the threshold moves towards the BS value~see Fig. 3!.
For noninteger values ofr (r .1), SOC is still preserved
within the BS universality class. However, in this case, t
distribution of the generated numbers is not uniform a
consequently it influences the distribution of the fitnesse
the stationary state.

Turning now to Fig. 4, we can see that the thresholds
the Bernoulli updating approach the BS value asr increases.
In Fig. 4 we have also plotted the best fit we could find f
the curvef c(r )2 f c

BS. This fit, which corresponds to a powe
law r 20.78, still remains an open problem from the theoretic
point of view.

There is a qualitative explanation for this behavior of t
thresholds. As we briefly mentioned in Sec. II, the change
threshold is an indication of the correlation in time of th
map we are using. Indeed, by looking at Eq.~8! we can see
that an increase inf c corresponds to a lower value ofn̄0 for

FIG. 2. First and all return distributions~non-normalized! for a
BS model with Bernoulli updating rule withr 52. For all the simu-
lations shown here, we used a lattice of 214 sites and 53109 itera-
tions exploiting the tree-algorithm explained in@35#.

FIG. 3. Distribution of the fitnesses forr 52,3,7,10; the thresh-
old for r 52 is quite different from the usual BS threshold while th
threshold corresponding tor 510 is very close to the BS value
~given by the vertical line!. For all the simulations shown here, w
used a lattice of 214 sites and 53109 iterations.
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fixed f 0. This fact means that the system spends more t
per site and this reflects the fact that it needs more time
decorrelate. At this stage one can also ask if Eq.~6! remains
valid even with a correlated map and if it is not necessary
introduce nonuniversal factors. The answer is given by
ticing that for fixed distanceD f from the threshold the value
n̄D f

is the same for all models, leading to

n̄D f
5

g

D f
, ~34!

whereg is the universal exponent introduced in Eq.~8! @41#.
This means that looking at the system from a distanceD f
from the threshold it is not possible to distinguish two sy
tems which have the same critical exponents.

B. Logistic and tent updating

In a previous subsection we showed that models w
time-correlated updating self-organize into a stable confi

FIG. 4. Values of the thresholdsf r for r 52, . . . ,31after sub-
tracting the value 0.656 for the random updating. For all the sim
lations shown here, we used a lattice of 1000 sites and 53104

measurements.

FIG. 5. First and all return distributions~non-normalized! for a
BS model with the logistic map withl54 as updating rule. The
exponents are the same as for the BS modelt f51.58 andta

50.42. In all the simulations shown in this figure, we used a latt
of 213 sites and 108 iterations.
e
to

o
-

-

h
-

ration with a threshold bigger than the one in the rand
updating. At this stage, it is natural to consider updating th
even if deterministic, isd correlated. In particular, we con
sider updating rules given by the logistic and tent maps.
us start by taking as an updating rule for the fitnesses
logistic map, Eq.~21!. As Fig. 5 shows, for those values ofl
for which the map is chaotic, the system not only exhib
SOC but also stays in the same universality class as the o
nal BS model. Forl,l` we find that the system is no
critical any more. This is due to the fact that, forl,l` , the
map goes to a periodic orbit, and consequently the upda
is not ergodic. This case is equivalent to a BS model wit
finite number of states for the fitnesses. In terms of our p
vious picture, the disorder force is too weak to ensure SO

One characteristic of the logistic updating is that, sin
the invariant measure is not uniform, the distribution of t
fitnesses above threshold is not uniform~see Fig. 6!. This is
not the case for the tent map, Eq.~26! or the shifted version
of it, Eq. ~29!. For both of these cases the fitness distribut
in the critical state is shown in Fig. 7. One observes t
there is a peak in the fitness distribution in the neighborho
of the threshold for Eq.~26!. This can be understood as bein
produced by the interplay between the dynamics of the

-

e

FIG. 6. Distribution of the fitnesses for the logistic map. O
can easily see the effect of the nonuniform invariant measure.

FIG. 7. The main body of the figure shows the distribution
the fitnesses for the tent map updating Eq.~26!. The plot in the inset
shows the fitness distribution for the case of the shifted tent m
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dating rule and the Bak-Sneppen dynamics. Indeed, the
map has an unstable fixed point atf * 5 2

3 * f c
BS. Then if a site

right below threshold is chosen as the minimum, the upda
value will be above threshold, but still close to it. The ne
update in the same site will put the value of the fitness ag
below threshold, if a little bit further apart@49#. Then, one
needs to update this site several times to remove it from
neighborhood of the threshold. Consequently, the probab
of finding a site with fitness in the neighborhood off c is
higher than in the random update.

If, on the other hand, one introduces the shifted tent m
Eq. ~29!, where the fixed point is not close tof c

BS, the dis-
tribution of the fitnesses above threshold is uniform, rese
bling exactly the random updating case~see Fig. 7!.

Comparing the different chaotic maps we can draw s
eral conclusions. First, time correlations in the updating
mediately reflect in a shift of the threshold in the sense t
higher correlations correspond to higher thresholds. Sec
as shown by the shifted tent map, the other higher corr
tions do not in principle produce any measurable chang
the statistical properties of the system.

C. Periodic updating

Since time correlations in the updating rule do not,
principle, destroy SOC, it is worth considering systems
which the time correlation of the updating does not dec
exponentially. As shown in@31#, the simplest example of thi
class is given by a model in which the choice of the n
fitness is done according to the periodic map, Eq.~31!.

As mentioned in Sec. III, choosing the initial phases
equivalent to choosing the initial condition of the syste
Consequently, we take our phasesf j at random (0<f j
<p/2). Our simulations indicate that if the frequencies a
the same, that is,v j[v, the strong synchronization of th
sites along the lattice destroys criticality~even though the
fitnesses are organized above a threshold!. Indeed, the sys-
tem develops a typical scale that is observed in the way
cutoff in the distribution probabilities. If we now choose th
frequenciesv j such that

v jÞv i ~35!

the situation changes dramatically. If we characterize the
quency distribution by two numbers, namely, its centerv0
and its widthDv, the behavior will indeed depend on bot
Even after long numerical investigation, the exact functio
form of this dependence cannot be outlined in a satisfac
way. Nevertheless, it is clear that over a whole range
values of the two parameters the system recovers a cri
behavior. An example can be seen in Fig. 8, where we ch
v0519.5p and Dv519.5p. As mentioned above, the un
versality class changes with respect to the original BS mo
with t f51.65(1) andta50.38(1), but the SOCbehavior is
preserved. We observed that this universality class depe
on the values ofv0 andDv. For the sake of clarity, we show
here only one example, out of many, that illustrates the po

V. CONCLUSIONS

Self-organized criticality in the BS model comes from t
competition between the disorder in the updating and
nt
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ordering pressure of the minimum rule. For a given latt
and a given set of dynamical rules, the use of stocha
updating is tantamount to the introduction of maximum d
order. On the other hand, chaotic maps produce serie
numbers that resemble~statistically! pure random numbers
with the exception of the functional form of the invaria
density and the existence of decaying time correlations.
results presented here show that the system, in its crit
state, feels the details of the underlying dynamics, eve
preserving the universality class.

The time correlations in the updating produce a chang
the nonuniversal features. In particular we showed that
these correlations increase, the critical state of the sys
moves towards a more ordered configuration, that is
threshold is higher. This correspondence is made evident
example, in the case of the shifted tent map. There, a c
pletely deterministic system reproduces the original BS
sults.

We would like to draw the attention of the reader to t
complementarity of the results presented here and those
tained by Bianucciet al. @32–34#. They showed that if a
variablew ~say a Brownian particle! is weakly coupled to a
system, provided this system is chaotic or ergodic, the res
ing deterministic motion of the variablew conforms to a
standard fluctuation-dissipation process. In fact, the irre
larities of the deterministic statistics are washed out by
time scale separation between the system of interest~repre-
sented byw) and the chaotic subsystem. The chaotic syst
is referred to as a ‘‘booster’’@32–34#. This is completely
analogous to what happens in the BS model. Noise~thermal
or otherwise! can be replaced by a deterministic system wi
out significant changes in the stationary state. Stochast
in the updating rule is sufficient but not necessary: SO
persists, even in the absence of chaos, for~ergodic! periodic
updating rules, if in a different universality class. Moreove
the conditions required from a deterministic system to be
appropriate booster are very similar to those required~from
the updating rule! for SOC to be preserved.

In summary, the results presented here indicate that
feature ensuring SOC in systems with extremal dynamic

FIG. 8. ~a! First and all return distributions~non-normalized! for
a BS model with disordered periodic updating rules; the expone
aret f51.65(1) andta50.38(1). ~b! Distribution of the fitnesses
In all the simulations shown in this picture, we used a lattice of12

sites and 53109 iterations.
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not the randomness of the updating but the fact that
choice of the site where the change is performed~namely,
the minimum rule! is random. Moreover, as long as there
enough diversity among the species on the lattice, the lon
the memory~or the internal correlation! of each member, the
higher the threshold. Indeed, in the case of chaotic maps
diversity is ensured by the random assignation of the ini
values and as much as the level of chaos is increased w
that the threshold decreases. In the case of the periodic
instead, the random initial conditions do not provide enou
diversity. Indeed, in order to have SOC, the internal tim
scales, i.e., the periods, have to be distributed in a disord
fashion. Briefly, one needs enough diversity for SOC to
pear@51#.

At this stage, several questions arise. On the one hand
d
,

n-

z

.

e,

. E
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co
e

er

he
l

see
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h
e
ed
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he

behavior of the threshold with the parameterr in the case of
Bernoulli updating needs to be explained. Second, and
haps more important from a theoretical point of view, wha
the exact relation between correlation time and the posi
of the threshold?

Finally, we believe that these results add strength to
relevance of SOC in physics and biology, since they all
different microscopic mechanisms to underlie its appeara
as a collective behavior.
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